18.(本小题满分8分)已知圆心为C的圆经过点A(1,0),B(2,1),且圆心C在y轴上,求此圆的方程。
已知数列{a}中,a
=2,前n项和为S
,且S
=.
(1)证明数列{an+1-an}是等差数列,并求出数列{an}的通项公式
(2)设bn=,数列{bn}的前n项和为Tn,求使不等式Tn>
对一切n∈N*都成立的最大正整数k的值
已知平面向量,
.
(Ⅰ)求;
(Ⅱ)设,
(其中
),若
,
试求函数关系式,并解不等式
.
设函数
。
(Ⅰ)若
,解不等式
;
(Ⅱ)如果
,,求
的取值范围。
已知函数 .
(1)设
,求函数
的极值;
(2)若
,且当
时,
恒成立,试确定
的取值范围.
某工厂有工人1000名,其中250名工人参加过短期培训(称为
类工人),另外750名工人参加过长期培训(称为
类工人).现用分层抽样方法(按
类,
类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).
(Ⅰ)
类工人中和
类工人各抽查多少工人?
(Ⅱ)从
类工人中抽查结果和从
类工人中的抽查结果分别如下表1和表2
表1:
表2:
(ⅰ)先确定
,再在答题纸上完成下列频率分布直方图。就生产能力而言,
类工人中个体间的差异程度与
类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)
(ii)分别估计
类工人和
类工人生产能力的平均数,并估计该工厂工人和生产能力的平均数(同一组中的数据用该区间的中点值作代表)。