(本小题12分)
在人们对休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。女性中有43人的休闲方式是看电视,27人的休闲方式是参加体育运动。男性中有21人的休闲方式是看电视,33人的休闲方式是参加体育运动。
(1)根据以上数据建立一个2×2的列联表
(2)判断性别是否与休闲方式有关系
已知首项都是1的两个数列{an},{bn}(bn≠0,n∈N*)满足anbn+1-an+1bn+2bn+1bn=0.
(1)令cn=,求数列{cn}的通项公式;
(2)若,求数列{an}的前n项和Sn.
巳知二次函数f(x)=ax2+bx+c (a>0,b,c∈R).
(Ⅰ)已知a=2,f(2)=2,若f(x)≥2对x∈R恒成立,求f(x)的表达式;
(Ⅱ)已知方程f(x)=0的两实根满足
.设f(x)在R上的最小值为m,求证:m<x1.
已知抛物线C:y2=2px(p>0),曲线M:x2+2x+y2=0(y>0).过点P(-3,0)与曲线M相切于点A的直线l,与抛物线C有且只有一个公共点B.
(Ⅰ)求抛物线C的方程及点A,B的坐标;
(Ⅱ)过点B作倾斜角互补的两条直线分别交抛物线C于S,T两点(不同于坐标原点),求证:直线ST∥直线AO.
设Sn为等差数列{an}的前n项和,其中a1=1,且( n∈N*).
(Ⅰ)求常数的值,并写出{an}的通项公式;
(Ⅱ)记,数列{bn}的前n项和为Tn,若对任意的n≥2,都有
成立,求
的取值范围.
如图,三棱锥P-ABC中,E,D分别是棱BC,AC的中点,PB="PC=AB=4,AC=8," BC=,PA=
.
(Ⅰ)求证:BC⊥平面PED;
(Ⅱ)求直线AC与平面PBC所成角的正弦值.