(本小题满分12分)
设f(x)=
(1)求函数f(x)的极值;
(2)当x∈[-1,2]时,f(x)<m恒成立,求实数m的取值范围..
如图,椭圆的中心为原点
,长轴在
轴上,离心率
,过左焦点
作
轴的垂线交椭圆于
、
两点,
.
(1)求该椭圆的标准方程;
(2)取垂直于
轴的直线与椭圆相交于不同的两点
、
,过
、
作圆心为
的圆,使椭圆上的其余点均在圆
外.若
,求圆
的标准方程.
在
中,内角
的对边分别是
,且
.
(1)求
;
(2)设
,
,求
的值.
如图,四棱锥
中,
,
,
,
,
为
的中点,
.
(1)求
的长;
(2)求二面角
的正弦值.
某商场举行的"三色球"购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:
奖级 |
摸出红、蓝球个数 |
获奖金额 |
一等奖 |
3红1蓝 |
200元 |
二等奖 |
3红0蓝 |
50元 |
三等奖 |
2红1蓝 |
10元 |
其余情况无奖且每次摸奖最多只能获得一个奖级.
(1)求一次摸奖恰好摸到1个红球的概率;
(2)求摸奖者在一次摸奖中获奖金额
的分布列与期望
.
设
,其中
,曲线
在点
处的切线与
轴相交于点
.
(1)确定
的值;
(2)求函数
的单调区间与极值.