现有三种基本电子模块,电流能通过
的概率都是P,电流能否通过各模块相互独立.已知
中至少有一个能通过电流
的概率为0.999.现由该电子模块组装成某预警系统M(如图所示),针对系统M而言,只要有电流通过该系统就能正常工作.
(1)求P值
(II)求预警系统M正常工作的概率
已知圆,直线
过定点A(1,0).
(1)若与圆相切,求
的方程;
(2)若与圆相交于P,Q两点,线段PQ的中点为M,又
与
的交点为N,判断
是否为定值,若是,则求出定值;若不是,请说明理由.
图4,四棱锥P—ABCD中,ABCD为矩形,△PAD为等腰直角三角形,
∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分别为PC和BD的中点.
(1)证明:EF∥面PAD;
(2)证明:面PDC⊥面PAD.
![]() |
已知体积为的球的表面上有
三点,且
两点的球面距离为
,求球心到平面
的距离.
已知点,求:
(1)直线的方程;
(2)以线段为直径的圆的方程.
某服装加工厂对外批发某种服装,生产成本为每件40元,对外批发价定为每件60元.该加工厂为了鼓励零售商大批量购买,推出优惠政策:一次购买不超过50件时,只享受批发价;一次购买超过50件时,每多购买1件,购买者所购买的所有服装可在享受批发价的基础上,每件再降低0.2元,但每件最低价不低于50元.
(1)试写出该种服装实际售价与销售数量
的函数关系式;
(2)在每件实际售价高于50元时,购买者一次购买多少件,加工厂获得的利润最大?
(利润=销售总额-成本)