游客
题文

某装置由两套系统M,N组成,只要有一套系统工作正常,该装置就可以正常工作。每套系统都由三种电子模块T1,T2,T3组成(如图所示已知T1,T2,T3正常工作的概率都是,且T1,T2,T3能否正常工作相互独立.(注:对每一套系统或每一种电子模块而言,只要有电流通过就能正常工作.)

(I )分别求系统M,N正常工作的概率
(II)设该装I中两套系统正常工作的套数为,求的分布列和期望.

科目 数学   题型 解答题   难度 较易
知识点: 正交试验设计方法
登录免费查看答案和解析
相关试题

选修4—4:坐标系与参数方程
(本题满分l0分)
在直角坐标系中,以O为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.圆O的参数方程为,(为参数,
(I)求圆心的一个极坐标;
(Ⅱ)当为何值时,圆O上的点到直线的最大距离为3.

(本小题满分10分)
如图6,AB是⊙O的弦,C、F是⊙O上的点,OC垂直于弦AB,过F点作⊙O的切线交AB的延长线于D,连结CF交AB于E点。

(I)求证:DE2=DB·DA.
(II)若BE=1,DE=2AE,求DF的长.

(本题12分)
分别是椭圆的左、右焦点,是该椭圆上的一个动点,为坐标原点.

(1)求的取值范围;
(2)设过定点的直线与椭圆交于不同的两点M、N,且∠为锐角,求直线的斜率的取值范围.

(本题12分)
如图,在三棱柱中,已知侧面

(1)求直线与底面ABC所成角正切值;
(2)在棱(不包含端点上确定一点的位置,使得(要求说明理由).
(3)在(2)的条件下,若,求二面角的大小.

(本题12分)
有一种舞台灯,外形是正六棱柱,在其每一个侧面(编号为①②③④⑤⑥)上安装5只颜色各异的灯,假若每只灯正常发光的概率为0.5,若一个侧面上至少有3只灯发光,则不需要更换这个面,否则需要更换这个面,假定更换一个面需要100元,用表示更换的面数,用表示更换费用。
(1)求①号面需要更换的概率;
(2)求6个面中恰好有2个面需要更换的概率;
(3)写出的分布列,求的数学期望。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号