已知矩形内接于圆柱下底面的圆
,
是圆柱的母线,若
,
,此圆柱的体积为
,求异面直线
与
所成角的余弦值.
如图, 为圆锥的顶点, 是圆锥底面的圆心, 为底面直径, . 是底面的内接正三角形, 为 上一点, .
(1)证明: 平面 ;
(2)求二面角 的余弦值.
设 是公比不为1的等比数列, 为 , 的等差中项.
(1)求 的公比;
(2)若 ,求数列 的前 项和.
已知函数 .
(1)当 时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;
(2)若f(x)≥1,求a的取值范围.
已知椭圆C: 过点M(2,3),点A为其左顶点,且AM的斜率为 ,
(1)求C的方程;
(2)点N为椭圆上任意一点,求△AMN的面积的最大值.
如图,四棱锥 P- ABCD的底面为正方形, PD⊥底面 ABCD.设平面 PAD与平面 PBC的交线为 l.
(1)证明: l⊥平面 PDC;
(2)已知 PD= AD=1, Q为 l上的点,求 PB与平面 QCD所成角的正弦值的最大值.