如图1,在平面内,ABCD是
且
的菱形,
和
都是正方形。将两个正方形分别沿AD,CD折起,使
与
重合于点D1。设直线l过点B且垂直于菱形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧,设
(图2)。
(1)设二面角E – AC – D1的大小为q,若,求
的取值范围;
(2)在线段上是否存在点
,使平面
平面
,若存在,求出
分
所成的比
;若不存在,请说明理由。
如图,在四棱锥中,底面
是直角梯形,侧棱
底面
,
垂直于
和
,
是棱
的中点.
(1)求证:平面
;
(2)求平面与平面
所成的二面角的余弦值;
(3)设点是直线
上的动点,
与平面
所成的角为
,求
的最大值.
已知数列的前
项和为
,向量
满足条件
.
(1)求数列的通项公式;
(2)设函数,数列
满足条件
.
①求数列的通项公式;
②设,求数列
的前
项和
.
已知函数.
(1)求的值;
(2)当(其中
,且a是常数)时,若
恒成立,求m的取值范围.
如图,在四棱锥中,底面ABCD为菱形,
,Q为AD的中点,
.
(1)求证:平面PQB;
(2)点M在线段PC上,,试确定t的值,使
平面MQB.
如图(1),在三角形ABC中,,
,点O、M、N分别为线段的中点,将ABO和MNC分别沿BO,MN折起,使平面ABO与平面CMN都与底面OMNB垂直,如图(2)所示.
(1)求证:平面CMN;
(2)求点M到平面CAN的距离.