设函数,其中为常数.(Ⅰ)证明:对任意,的图象恒过定点;(Ⅱ)当时,判断函数是否存在极值?若存在,求出极值;若不存在,说明理由;(Ⅲ)若对任意时,恒为定义域上的增函数,求的最大值.请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分.
(本小题满分12分) 命题p:对任意实数都有恒成立;命题q:关于的方程有实数根.若“p或q”为真命题,“p且q”为假命题,求实数的取值范围。
(本小题满分10分) 如图,在棱长为3的正方体中,. ⑴求两条异面直线与所成角的余弦值; ⑵求平面与平面所成的锐二面角的余弦值.
定义在上的函数,,当时,.且对任意的有。 (1)证明:; (2)证明:对任意的,恒有; (3)证明:是上的增函数; (4)若,求的取值范围。
已知函数,且 (1)求; (2)判断的奇偶性; (3)试判断在上的单调性,并证明。
已知满足,求函数的最大值和最小值
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号