某环保小组为了解世博园的游客在园区内购买瓶装饮料数量的情况,一天,他们分别在A、B 、C三个出口处,对离开园区的游客进行调查,其中在A出口调查所得的数据整理后绘成图。
出口 |
B |
C |
人均购买饮料数量(瓶) |
3 |
2 |
(1)在A出口的被调查游客中,购买2瓶以上饮料的游客人数占A出口的被调查游客人数的____________%
(2)试问A出口的被调查游客在园区内人均购买了多少瓶饮料?
(3)已知B、C两个出口的被调查游客在园区内人均购买饮料的数量如上表所示,若C出口的被调查人数比B出口的被调查人数多2万,且B、C两个出口的被调查游客在园区内共购买了49万瓶饮料,试问B出口的被调查游客人数为多少万?
如图,在平面直角坐标系中,顶点为(,
)的抛物线交
轴于
点,交
轴于
,
两点(点
在点
的左侧).已知
点坐标为(
,
).
(1)求此抛物线的解析式;
(2)过点作线段
的垂线交抛物线于点
, 如果以点
为圆心的圆与直线
相切,请判断抛物线的对称轴
与⊙
有怎样的位置关系,并给出证明;
(3)已知点是抛物线上的一个动点,且位于
,
两点之间,问:当点
运动到什么位置时,
的面积最大?并求出此时
点的坐标和
的最大面积.
某校团委计划在“七·一”前夕举行“唱响红歌”班级歌咏比赛,要确定一首喜欢人数最多的歌曲为每班必唱歌曲.为此提供代号为A、B、C、D四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制如下两幅不完整的统计图.请根据图①,图②所提供的信息,解答下列问题:
(1)本次抽样调查的学生有_________名,其中选择曲目代号为A的学生占抽样总数的百分比是________%.
(2)请将图②补充完整;
(3)扇形图中选择曲目代号为B的学生所在的扇形的圆心角的度数是 .
(4)若该校共有1200名学生,根据抽样调查的结果估计全校共有多少名学生选择此必唱歌曲?(要有解答过程)
已知如图(1),⊙O的直径AB=12cm,AM和BN是它的两条切线,DE切⊙O于E,交AM于D,交BN于C.
(1)设AD=m,BC=n,若m、n是方程的两个根,求m、n.
(2) 如图(2),连接OD、BE,求证:OD∥BE.
如图,AB是⊙O的直径,AC是弦,CD是⊙O的切线,C为切点,AD⊥CD于点D.
求证:(1)∠AOC=2∠ACD;(2)AC2=AB·AD.
如图,ABCD是⊙O的内接四边形,DP∥AC,交BA的延长线于P,求证:AD·DC=PA·BC.