(本小题满分14分)
已知双曲线:
和圆
:
(其中原点
为圆心),过双曲线
上一点
引圆
的两条切线,切点分别为
、
.
(1)若双曲线上存在点
,使得
,求双曲线离心率
的取值范围;
(2)求直线的方程;
(3)求三角形面积的最大值.
一个袋子里有4个不同的红球,6个不同的白球,从中任取4个使得取出的球中红球比白球多的取法有多少种?红球不少于白球的取法又有多少种?
(1)把5本不同的书分给3名同学,每人一本,有多少种不同的分法?
(2)把5本相同的书分给3名同学,每人一本,有多少种不同的分法?
(选修4-5;不等式选讲)若与不等式
同解,
的解集为空集,求
的取值范围.
(选修4-4;坐标系与参数方程)已知直线经过点P(1,1),倾斜角
,
(1)写出直线的参数方程;
(2)设与圆
相交与两点A、B,求点P到A、B两点的距离之积.
(本小题满分12分)已知,函数
(1)当时,求函数
在点(1,
)的切线方程;
(2)求函数在[-1,1]的极值;
(3)若在上至少存在一个实数
,使
成立,求正实数
的取值范围.