(本小题满分14分)
函数定义在区间[a, b]上,设“
”表示函数
在集合D上的最小值,“
”表示函数
在集合D上的最大值.现设
,
,
若存在最小正整数k,使得对任意的
成立,则称函数
为区间
上的“第k类压缩函数”.
(Ⅰ) 若函数,求
的最大值,写出
的解析式;
(Ⅱ) 若,函数
是
上的“第3类压缩函数”,求m的取值范围.
(本小题满分l2分) 已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.
(1)求函数f(x)的解析式;
(2)求证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4;
(3)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围.
(本小题满分12分)
平面内动点P(x,y)与两定点A(-2, 0), B(2,0)连线的斜率之积等于,若点P的轨迹为曲线E,过点Q
作斜率不为零的直线
交曲线E于点
.
(1)求曲线E的方程;
(2)求证:;
(3)求面积的最大值.
如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使得平面ABEF平面EFDC.
(1)当,是否在折叠后的AD上存在一点
,使得CP∥平面ABEF?若存在,求出P点位置,若不存在,说明理由;
(2)设BE=x,问当x为何值时,三棱锥ACDF的体积有最大值?并求出这个最大值.
(本小题满分12分)在中,已知角A、B、C所对的边分别为
,直线
与直线
互相平行(其中
).
(1)求角A的值;
(2)若的取值范围.
(本小题满分12分)“等比数列 中,
,且
是
和
的等差中项,若
(1)求数列 的通项公式;
(2)求数列的前
项和.