已知等差数列{an}满足:a2=5,a4+a6=22,数列{bn}满足b1+2b2+…
+2n-1bn=nan,设数列{bn}的前n项和为Sn.
(1)求数列{an},{bn}的通项公式;
(2)求满足13<Sn<14的n的集合.
(本小题满分13分)
在一次数学统考后,某班随机抽取10名同学的成绩进行样本分析,获得成绩数据的茎叶图如下.
(Ⅰ)计算样本的平均成绩及方差;
(Ⅱ)现从10个样本中随机抽出2名学生的成绩,设选出学生的分数为90分以上的人数为
,求随机变量
的分布列和均值.
| 9 |
2 |
8 |
8 |
| 8 |
5 |
5 |
|
| 7 |
4 |
4 |
4 |
| 6 |
0 |
0 |
(本小题满分13分)
已知函数
,
.
(Ⅰ)若曲线
在点
处的切线与直线
垂直,求
的值;
(Ⅱ)求函数
的单调区间;
(Ⅲ)当
,且
时,证明:
.
(本小题满分13分)
已知椭圆
的离心率为
,以原点为圆心,椭圆的短半轴为半径的圆与直线
相切.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
,
,
是椭圆
上关于
轴对称的任意两个不同的点,连结
交椭圆
于另一点
,证明直线
与
轴相交于定点
;
(Ⅲ)在(Ⅱ)的条件下,过点
的直线与椭圆
交于
,
两点,求
的取值范围.
已知函数
的定义域为
,值域为
。试求函数
的最小正周期T和最值。
已知函数
(1)设
为何值时,函数y取得最小值;
(2)若函数y的最小值为1,试求a的值.