(本小题满分16分)甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概
率为
.
(1)记甲击中目标的次数为X,求X的概率分布及数学期望E (X);
(2)求乙至多击中目标2次的概率;
(3)求甲恰好比乙多击中目标2次的概率.
已知三次函数为奇函数,且在点
的切线方程为
(1)求函数的表达式;
(2)已知数列的各项都是正数,且对于
,都有
,求数列
的首项
和通项公式;
(3)在(2)的条件下,若数列满足
,求数列
的最小值.
已知椭圆C:(a>b>0),则称以原点为圆心,r=
的圆为椭圆C的“知己圆”。
(Ⅰ)若椭圆过点(0,1),离心率e=;求椭圆C方程及其“知己圆”的方程;
(Ⅱ)在(Ⅰ)的前提下,若过点(0,m)且斜率为1的直线截其“知己圆”的弦长为2,求m的值;
(Ⅲ)讨论椭圆C及其“知己圆”的位置关系.
2013年某工厂生产某种产品,每日的成本(单位:万元)与日产量
(单位:吨)满足函数关系式
,每日的销售额
(单位:万元)与日产量
的函数关系式
已知每日的利润,且当
时,
.
(1)求的值;
(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.
某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在的产品为合格品,否则为不合格品.表1是甲流水线样本频数分布表,图1是乙流水线样本的频率分布直方图.
表1:(甲流水线样本频数分布表) 图1:(乙流水线样本频率分布直方图)
(1)根据上表数据在答题卡上作出甲流水线样本的频率分布直方图;
(2)若以频率作为概率,试估计从两条流水线分别任取1件产品,该产品恰好是合格品的概率分别是多少;
(3)由以上统计数据完成下面列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.
甲流水线 |
乙流水线 |
合计 |
|
合格品 |
![]() |
![]() |
|
不合格品 |
![]() |
![]() |
|
合 计 |
![]() |
附:下面的临界值表供参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:,其中
)
如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知AD=4, BD=,AB=2CD=8.
(1)设M是PC上的一点,证明:平面MBD⊥平面PAD;
(2)求四棱锥P-ABCD的体积.