(本小题满分12分)
在一个盒子中,放有标号分别为1,2,3的三张卡片,先从这个盒子中有放回地先后抽取两张卡片,设这两张卡片的号码分别为为坐标原点,
记
(1)求随机变量的最大值,并求事件“
取最大值”的概率;
(2)求的分布
列及数学期望。
已知以点为圆心的圆与直线
相切,过点
的动直线与圆
相交于
两点.
(1)求圆的方程;
(2)当时,求直线
的方程.
已知命题:方程
有两个不相等的负实根,命题
:
恒成立;若
或
为真,
且
为假,求实数
的取值范围.
在平面直角坐标系中,若,且
.
(1)求动点的轨迹
的方程;
(2)已知定点,若斜率为
的直线
过点
并与轨迹
交于不同的两点
,且对于轨迹
上任意一点
,都存在
,使得
成立,试求出满足条件的实数
的值.
如图,椭圆经过点
,离心率
,直线
的方程为
.
(1)求椭圆的方程;
(2)是经过右焦点
的任一弦(不经过点
),设直线
与直线
相交于点
,记
的斜率分别为
.问:是否存在常数
,使得
?若存在,求
的值;若不存在,说明理由.
已知中心在原点的双曲线的右焦点为
,实轴长
.
(1)求双曲线的方程
(2)若直线与双曲线恒有两个不同的交点
,且
为锐角(其中
为原点),求
的取值范围.