三.解答题:本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤.
17. (本题满分10分)
已知函数,
(1)求函数的最小正周期;
(2)在中,已知
为锐角,
,
,求
边的长.
设椭圆C1:的右焦点为F,P为椭圆上的一个动点.
(1)求线段PF的中点M的轨迹C2的方程;
(2)过点F的直线l与椭圆C1相交于点A、D,与曲线C2顺次相交于点B、C,当时,求直线l的方程.
如图,在平面
内,
,AB=2BC=2,P为平面
外一个动点,且PC=
,
(1)问当PA的长为多少时,
(2)当的面积取得最大值时,求直线PC与平面PAB所成角的正弦值
在数列{an}中,,
,
(1)求数列的通项公式
(2)设(
),记数列
的前k项和为
,求
的最大值.
设的三内角
所对的边长分别为
,且
,A=
,
.
(1)求三角形ABC的面积;
(2)求的值及
中内角B,C的大小.
已知函数(
,
为自然对数的底数).
(1)若曲线在点
处的切线平行于
轴,求
的值;
(2)求函数的极值;
(3)当的值时,若直线
与曲线
没有公共点,求
的最大值.