甲、乙两人约好在“五、一”长假时间去天水市石马坪南山牡丹园观花游玩,决定在早晨7点半到8点半之间在石马坪的惠民商场门口会面,并约定先到者等候另一人15分钟,若未等到,即可离开惠民商场门口,直接去牡丹园观花,大家算一算在“五、一”这一天两人会面后一起去观花的概率是多少?
(本小题满分12分)
已知
三个内角
的对边分别为
,
的图象与直线
相切,且切点横坐标依次成公差为
的等差数列,点
是函数
的一个对称中心.
(Ⅰ)求
的大小;
(Ⅱ)已知
,
为
的面积,求
的最大值及此时B的值.
(本小题满分13分)
已知数列
,设
,数列
.
(I)求证:
是等差数列;
(II)求数列
的前n项和Sn;
(Ⅲ)若
一切正整数n恒成立,求实数m的取值范围.
(本小题满分13分)
抛物线
上一点
到其焦点的距离为5.
(I)求
与
的值;
(II)若直线
与抛物线
相交于
、
两点,
、
分别是该抛物线在
、
两点处的切线,
、
分别是
、
与该抛物线的准线交点,求证:
.
(本小题满分13分)已知函数
,其中
为自然对数的底数.
(Ⅰ)当
时,求曲线
在
处的切线与坐标轴围成的面积;
(Ⅱ)若函数
存在一个极大值点和一个极小值点,且极大值与极小值的积为
,求
的值.
(本小题满分12分)科研所研究人员都具有本科和研究生两类学历,年龄段和学历如下表,从该科研所任选一名研究人员,是本科生概率是
,是35岁以下的研究生概率是
.
(Ⅰ)求出表格中的
和
的值;
(Ⅱ)设“从数学教研组任选两名教师,本科一名,研究生一名,50岁以上本科生和35岁以下的研究生不全选中” 的事件为A,求事件A概率P(A).