(文科)设、
分别是椭圆
的左、右焦点.
(Ⅰ)若是该椭圆上的一个动点,求
·
的最大值和最小值;
(Ⅱ)设过定点的直线
与椭圆交于不同的两点
、
,且∠
为锐角(其中
为坐标原点),求直线
的斜率
的取值范围.
(文科)过点作直线
与椭圆
相交于
两点,
为坐标原点,求
面积的最大值及此时直线倾斜角的正切值。
(理科)已知菱形的顶点
在椭圆
上,对角线
所在直线的斜率为1.
(Ⅰ)当直线过点
时,求直线
的方程;
(Ⅱ)当时,求菱形
面积的最大值.
(文科)在平面直角坐标系xOy中,点P到点F(3,0)的距离的4倍与它到直线x=2的距离的3倍之和记为d,当P点运动时,d恒等于点P的横坐标与18之和
(Ⅰ)求点P的轨迹C;
(Ⅱ)设过点F的直线I与轨迹C相交于M,N两点,求线段MN长度的最大值。
(理科)椭圆中心在原点
,焦点在
轴上,其离心率
,过点
的直线
与椭圆
相交于
两点,且C分有向线段
的比为2.
(1)用直线的斜率
表示
的面积;
(2)当的面积最大时,求椭圆E的方程.