[应用题]如图,一单杠高2.2米,两立柱之间的距离为1.6米,将一绳子的两端拴于立柱与铁杠结合处,绳子自然下垂呈抛物线状.
(1)如图(1)一身高为0.7米的小孩站在离立柱0.4米处,其头部刚好触到绳子,求绳子最低点到地面的距离;
(2)如图(2),为供孩子们打秋千,把绳子剪断后,中间系一块长为0.4米的木板.除掉系木板用去的绳子后,两边的绳子长正好各为2米,木板与地面平行.求这时木板离地面的距离(参考数据:≈1.8,
≈1.9,
≈2.1).
已知二次函数.
(1)在给定的直角坐标系中,画出这个函数的图象;
(2)根据图象,写出当y<0时,x的取值范围;
(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式.
解方程:
如图1,在平面直角坐标系中,有一矩形ABCD,其三个顶点的坐标分别为A(2,0)、B(8,0)、C(8,3).将直线l:y=-3x-3以每秒3个单位的速度向右运动,设运动时间为t秒.
(1)当t=_________时,直线l经过点A.(直接填写答案)
(2)设直线l扫过矩形ABCD的面积为S,试求S>0时S与t的函数关系式.
(3)在第一象限有一半径为3、且与两坐标轴恰好都相切的⊙M,在直线l出发的同时,⊙M以每秒2个单位的速度向右运动,如图2所示,则当t为何值时,直线l与⊙M相切?
如图,已知二次函数y=ax2+bx+c的图象的顶点为M(2,1),且过点N(3,2).
(1)求这个二次函数的关系式;
(2)若一次函数y=-x-4的图象与x轴交于点A,与y轴交于点B,P为抛物线上的一个动点,过点P作PQ∥y轴交直线AB于点Q,以PQ为直径作圆交直线AB于点D.设点P的横坐标为n,问:当n为何值时,线段DQ的长取得最小值?最小值为多少?
探究一:如图1,已知正方形ABCD,E、F分别是BC、AB上的两点,且AE⊥DF.小明经探究,发现AE=DF.请你帮他写出证明过程.
探究二:如图2,在矩形ABCD中,AB=3,BC=4,E、G分别在边BC、AD上,F、H分别在边AB、CD上,且GE⊥FH.小明发现,GE与FH并不相等,请你帮他求出的值.
探究三:小明思考这样一个问题:如图3,在正方形ABCD中,若E、G分别在边BC、AD上,F、H分别在边AB、CD上,且GE=FH,试问:GE⊥FH是否成立?若一定成立,请给予证明;若不一定成立,请画图并作出说明.