本小题满分10分)选修4—4:坐标系与参数方程
如图,已知点,
,圆
是以
为直径的圆,直线
:
(
为参数).
(Ⅰ)写出圆的普通方程并选取适当的参数改写为参数方程;
(Ⅱ)过原点作直线
的垂线,垂足为
,若动点
满足
,当
变化时,求点
轨迹的参数方程,并指出它是什么曲线.
(本小题满分14分)
对函数Φ(x),定义fk(x)=Φ(x-mk)+nk(其中x∈(mk,
m+mk],k∈Z,m>0,n>0,且m、n为常数)为Φ(x)的第k阶阶梯函数,m叫做阶宽,n叫做阶高,已知阶宽为2,阶高为3.
(1)当Φ(x)=2x时 ①求f0(x)和fk
(x)
的解析式; ②求证:Φ(x)的各阶阶梯函数图象的最高点共线;
(本小题满分12分)设直线l(斜率存在)交抛物线y2=2px(p>0,且p是常数)于两个不同点A(x1,y1),B(x2,y2),O为坐标原点,且满足
=x1x2+2(y1+y2).
(1)求证:直线l过定点;
(2)设(1)中的定点为P,若点M在射线PA上,满足,求点M
的轨迹方程.
(本小题满分12分)已知等差数列{an2
}中,首项a12=1,公差d=1,an>0,n∈N
*.
(1)求数列{an}的通项公式;
(2)设bn=,数列{bn}的前120项和T120;
(本小题满分12分)如图,在四边形ABCD中,AC⊥BD,垂足为O,PO⊥平面ABCD,AO=BO=DO=1,CO=PO=2,E是线段PA上的点,AE∶AP=1∶3.
(1)求证:OE∥平面PBC;
(2)求二面角D-PB-C的大小.
(本小题满分12分)已知向量=(sin2x,cos2x),
=(cos
,sin
),函数f(x)=
+2a(其中a为实常数)
(1)求函数f(x)的最小正周期;
(2)若x∈[0,]时,函数f(x)的最小值为-2,求a的值.