((本小题满分12分)
如图,已知四棱锥P—ABCD的底面是直角梯形,∠ABC=∠BCD=90o,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,O是BC的中点,AO交BD于E.
(1)求证:PA⊥BD;
(2)求二面角P—DC—B的大小.
某中学将100名高一新生分成水平相同的甲,乙两个“平行班”,每班50人。陈老师采用A,B两种不同的教学方式分别在甲,乙两个班级进行教改实验。为了解教学效果,期末考试后,陈老师对甲,乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图),计成绩不低于90分者为“成绩优秀”.
从乙班随机抽取2名学生的成绩,记“成绩优秀”的个数为,求
的分布列和数学期望.
根据频率分布直方图填写下面2x2列联表,并判断是否有的把握认为“成绩优秀”与教学方式有关.
甲班(A方式) |
乙班(B方式) |
总计 |
|
成绩优秀 |
|||
成绩不优秀 |
|||
总计 |
附:
P(![]() |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
k |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
已知数列满足:
且
.
求的通项公式;
(2)令数列
的前n项和为
,证明:
<1.
如图,A,B是单位圆O上的点,C,D是圆O与x轴的两个交点,是正三角形.
(1)若A点的坐标为,求
的值;
(2)若=x
,四边形CABD的周长为y,试将y表示成x的函数,并求出y的最大值.
(本小题满分14分)
设函数.
(Ⅰ)当(e为自然对数的底数)时,求
的最小值;
(Ⅱ)讨论函数零点的个数;
(Ⅲ)若对任意恒成立,求m的取值范围.
(本小题满分13分)坐标系中,已知椭圆
的其中一个顶点坐标为B(0,1),且点
在
上.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线与椭圆
交于M,N且
,求证:
为定值.