(本小题满分14分)某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m,三块矩形区域的前、后与内墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3m 宽的通道,如图.设矩形温室的室内长为(m),三块种植植物的矩形区域的总面积为
(m2).
(1)求关于
的函数关系式;
(2)求的最大值.
(本小题满分14分)如图,四棱锥的底面ABCD 是平行四边形,平面PBD⊥平面 ABCD, PB=PD,
⊥
,
⊥
,
,
分别是
,
的中点,连结
.求证:
(1)∥平面
;
(2)⊥平面
.
(本小题满分14分)在△ABC中,角A,B,C的对边分别为a,b,c.已知,
.
(1)求的值;(2)求
的值;(3)若
,求△ABC的面积.
(本小题满分10分)设个正数
满足
(
且
).
(1)当时,证明:
;
(2)当时,不等式
也成立,请你将其推广到
(
且
)个正数
的情形,归纳出一般性的结论并用数学归纳法证明.
(本小题满分10分)一位网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的五种商品有购买意向.已知该网民购买
两种商品的概率均为
,购买
两种商品的概率均为
,购买
种商品的概率为
.假设该网民是否购买这五种商品相互独立.
(1)求该网民至少购买4种商品的概率;
(2)用随机变量表示该网民购买商品的种数,求
的概率分布和数学期望.