游客
题文

(本小题满分14分)某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m,三块矩形区域的前、后与内墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3m 宽的通道,如图.设矩形温室的室内长为(m),三块种植植物的矩形区域的总面积为(m2).

(1)求关于的函数关系式;
(2)求的最大值.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本小题满分14分)
已知满足不等式,求函数的最小值.

(本小题满分14分)已知定义域为的函数是奇函数。
(Ⅰ)求的值;
(Ⅱ)若对任意的,不等式恒成立,求的取值范围;

(本小题满分14分)
已知条件
条件
(Ⅰ)若,求实数的值;
(Ⅱ)若,求实数的取值范围.

已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录于下表中:


3
2
4



0
4

(Ⅰ)求的标准方程;
(Ⅱ)请问是否存在直线满足条件:①过的焦点;②与交不同两点且满足?若存在,求出直线的方程;若不存在,说明理由.

(本小题满分12分)
已知函数.
(Ⅰ)当时,求函数上的最大值、最小值;
(Ⅱ)令,若上单调递增,求实数的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号