(本小题满分14分)已知点,点是⊙:上任意两个不同的点,且满足,设为弦的中点.(1)求点的轨迹的方程;(2)试探究在轨迹上是否存在这样的点:它到直线的距离恰好等于到点的距离?若存在,求出这样的点的坐标;若不存在,说明理由.
(本小题满分12分) 已知是矩形,平面,,,为的中点. (1)求证:平面; (2)求直线与平面所成的角.
(本小题满分10分) 已知等差数列的前项和为且 (1)求的通项公式; (2)设求数列的前项和
(本小题满分10分) 已知平面上三个向量,其中, (1)若,且∥,求的坐标; (2)若,且,求与夹角的余弦值.
设椭圆M:的离心率与双曲线的离心率互为倒数,且内切于圆. (1)求椭圆M的方程; (2)若直线交椭圆于A、B两点,是椭圆M上的一点,求面积的最大值.
命题双曲线的离心率,命题在R上是增函数.若“或”为真, “且”为假,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号