.[必做题](本小题满分10分)已知,(其中).(1)求;(2)求证:当时,.
已知函数的最小正周期是. (1)求的单调递增区间; (2)求在[,]上的最大值和最小值.
设函数的定义域是,其中常数.(注: (1)若,求的过原点的切线方程. (2)证明当时,对,恒有. (3)当时,求最大实数,使不等式对恒成立.
设,用表示当时的函数值中整数值的个数. (1)求的表达式. (2)设,求. (3)设,若,求的最小值.
设抛物线:的准线与轴交于点,焦点为;椭圆以和为焦点,离心率.设是与的一个交点. (1)求椭圆的方程. (2)直线过的右焦点,交于两点,且等于的周长,求的方程.
如图,正方体中,已知为棱上的动点. (1)求证:; (2)当为棱的中点时,求直线与平面所成角的正弦值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号