(本题12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类。这三类工程所含项目的个数分别为6,4,2。现在3名工人独立地从中任选一个项目参与建设。
(1)求他们选择的项目所属类别互不相同的概率;
(2)记为3人中选择的项目属于基础设施工程或产业建设工程的人数,求
的分布列及数学期望。
已知三点,
,
.
(1)求与
的夹角;
(2)求在
方向上的投影.
定义在上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的一个上界.
已知函数,
.
(1)若函数为奇函数,求实数
的值;
(2)在(1)的条件下,求函数在区间
上的所有上界构成的集合;
(3)若函数在
上是以3为上界的有界函数,求实数
的取值范围.
已知圆的方程:
,其中
.
(1)若圆C与直线相交于
,
两点,且
,求
的值;
(2)在(1)条件下,是否存在直线,使得圆上有四点到直线
的距离为
,若存在,求出
的范围,若不存在,说明理由.
如图所示,圆锥的轴截面为等腰直角,
为底面圆周上一点.
(1)若的中点为
,
,
求证:平面
;
(2)如果,
,求此圆锥的全面积.
已知幂函数为偶函数.
(1)求的解析式;
(2)若函数在区间(2,3)上为单调函数,求实数
的取值范围.