泉州市为鼓励企业发展“低碳经济”,真正实现“低消耗、高产出”,施行奖惩制度.通过制定评
分标准,每年对本市的企业抽查评估,评出优秀、良好、合格和不合格四个等次,
并根据等级给予相应的奖惩(如下表).某企业投入万元改造,由于自身技术原因,
能达到以上四个等次的概率分别为,且由此增加的产值分别为
万元、
万元、
万元、
万元.设该企业当年因改造而增加利润为
.
(Ⅰ)在抽查评估中,该企业能被抽到且被评为合格以上等次的概率是多少?
(Ⅱ)求的数学期望.
评估得分 |
![]() |
![]() |
![]() |
![]() |
评定等级 |
不合格 |
合格 |
良好 |
优秀 |
奖惩(万元) |
![]() |
![]() |
![]() |
![]() |
已知,点
在曲线
上
,
(Ⅰ)(Ⅰ)求数列
的通项公式;
(Ⅱ)设数列的前n项和为
,若对于任意的
,使得
恒成立,求最小正整数t的值.
如图,在四棱锥中,底面
是矩形,
底面
,
是
的中点,已知
,
,
,
求:(Ⅰ)三角形的面积;(II)三棱锥
的体积
已知函数,若
的最大值为1.
(1)求的值,并求
的单调递增区间;
(2)在中,角
、
、
的对边
、
、
,若
,且
,试判断三角形的形状.
某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:每一组;第二组
,……,第五组
.右图是按上述分组方法得到的频率分布直方图.
(I)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(II)设、
表示该班某两位同学的百米测试成绩,且已知
,求事件“
”的概率.
已知函数f(x)=aex,g(x)=lnx-lna,其中a为常数,e=2.718…,且函数y=f(x)和y=g(x)的图像在它们与坐标轴交点处的切线互相平行.
(1)求常数a的值;(2)若存在x使不等式>
成立,求实数m的取值范围;
(3)对于函数y=f(x)和y=g(x)公共定义域内的任意实数x0,我们把|f(x0)-g(x0)|的值称为两函数在x0处的偏差.求证:函数y=f(x)和y=g(x)在其公共定义域内的所有偏差都大于2.