己知三棱柱,在底面ABC上的射影恰为AC的中点D,,,又知(Ⅰ)求证:平面;(Ⅱ)求点C到平面的距离;(Ⅲ)求二面角余弦值的大小.
如图,四棱锥的底面是正方形,棱底面,=1,是的中点. (1)证明平面平面; (2)求二面角的余弦值.
已知函数,其中 (1)对于函数,当时,,求实数的取值集合; (2)当时,的值为负,求的取值范围.
设函数. (Ⅰ)解不等式; (Ⅱ)若不等式的解集为,求实数的取值范围.
极坐标系与直角坐标系有相同的长度单位,以原点为极点,以轴正半轴为极轴.已知直线的参数方程为(为参数),曲线的极坐标方程为. (Ⅰ)求的直角坐标方程; (Ⅱ)设直线与曲线交于两点,求弦长.
如图,为圆的直径,为垂直于的一条弦,垂足为,弦与交于点. (Ⅰ)证明:四点共圆; (Ⅱ)证明:.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号