如图,在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午11时,测得一轮船在岛北偏东30°,俯角为30°的B处,到11时10分又测得该船在岛北偏西60°,俯角为60°的C处.
(1)求船的航行速度是每小时多少千米?
(2)又经过一段时间后,船到达海岛的正西方向的D处,问此时船距岛A有多远?
如图平面SAC⊥平面ACB,ΔSAC是边长为4的等边三角形,ΔACB为直角三角形,∠ACB=90,BC=,求二面角S-AB-C的余弦值.
已知,
.
(1)求;
(2)求的值.
某公司计划2011年在甲、乙两个电视台做总时间不超过300分钟的广告,广告费用不超过9万元.甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟.假定甲、乙两个电视台为该公司每分钟所做的广告,能给公司带来的收益分别为0.3 万元和0.2万元.问:该公司如何分配在甲、乙两个电视台的广告时间,才能使公司收益最大,最大收益是多少万元?
如图,在半径为、圆心角为60°的扇形的
弧上任取一点
,作扇形的内接矩形
,使点
在
上,点
在
上,设矩形
的面积为
.
(1)按下列要求写出函数关系式:
①设,将
表示成
的函数关系式;
②设,将
表示成
的函数关系式.
(2)请你选用(1)中的一个函数关系式,求的最大值.
设等差数列的前
项和为
且
.
(1)求数列的通项公式及前
项和公式;
(2)设数列的通项公式为
,问: 是否存在正整数t,使得
成等差数列?若存在,求出t和m的值;若不存在,请说明理由.