如图,在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午11时,测得一轮船在岛北偏东30°,俯角为30°的B处,到11时10分又测得该船在岛北偏西60°,俯角为60°的C处.(1)求船的航行速度是每小时多少千米?(2)又经过一段时间后,船到达海岛的正西方向的D处,问此时船距岛A有多远?
已知直线与圆相交于两点,为坐标原点,的面积为. (1)试将表示成的函数,并求出其定义域; (2)求的最大值,并求取得最大时的值.
如图,已知平面,平面,为等边三角形,,为中点. (1)求证:平面; (2)求证:平面平面; (3)求直线与平面所成角的正弦值.
已知向量. (1)若,求的值; (2)记,在中,角的对边分别为,且满足,求的取值范围.
已知数列是首项为1的等差数列,且,若成等比数列,(1)求数列的通项公式;(2)设,求数列的前项和.
(选修4-5:不等式选讲) 关于的不等式, (1)当时,解上述不等式; (2)当时,若上述不等式恒成立,求实数的取值范围。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号