2010年度东风公司神鹰汽车改装厂开发出A型农用车,其成本价为每辆2万元,出厂价为每辆2.4万元,年销售价为10000辆,2011年为了支援西部大开发的生态农业建设,该厂抓住机遇,发展企业,全面提高A型农用车的科技含量,每辆农用车的成本价增长率为x,出厂价增长率为0.75x,预测年销售增长率为0.6x.(年利润=(出厂价-成本价)×年销售量)
(1)求2011年度该厂销售A型农用车的年利润y(万元)与x之间的函数关系。
(2)该厂要是2001年度销售A型农用车的年利润达到4028万元,该年度A型农用车的年销售量应该是多少辆?
如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.
解方程组.
如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.
(1)求出抛物线的解析式;
(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.
在图1、图2、图3、图4中,点P在线段BC上移动(不与B、C重合),M在BC的延长线上.
(1)如图1,△ABC和△APE均为正三角形,连接CE.
①求证:△ABP≌△ACE.
②∠ECM的度数为°.
(2)①如图2,若四边形ABCD和四边形APEF均为正方形,连接CE .则∠ECM的度数为°.
②如图3,若五边形ABCDF和五边形APEGH均为正五边形,连接CE.则∠ECM的度数为 °.
(3)如图4,n边形ABC…和n边形APE…均为正n边形,连接CE,请你探索并猜想∠ECM的度数与正多边形边数n的数量关系(用含n的式子表示∠ECM的度数),并利用图4(放大后的局部图形)证明你的结论.
如图,点A是反比例函数y=的图象与直线y=x-2的交点,且A点纵坐标为1.
(1)求k的值;
(2)求反比例函数的图象与直线y=x-2的另一个交点坐标;
(3)直接写出x取何值时,反比例函数的值大于一次函数的值.