已知0<a<,A=1-a2,B=1+a2,C=,D=.
(1)求证:1-a>a2;
(2)比较A、B、C、D的大小
如图a—l—是120°的二面角,A,B两点在棱上,AB=2,D在
内,三角形ABD是等腰直角三角形,∠DAB=90°,C在
内,
ABC是等腰直角三角形∠ACB=
(I)求三棱锥D—ABC的体积;
(2)求二面角D—AC—B的大小;
(3)求异面直线AB、CD所成的角.
四棱锥P—ABCD的底面是边长为a的正方形,PB⊥面ABCD.
(1)若面PAD与面ABCD所成的二面角为60°,求这个四棱锥的体积;
(2)证明无论四棱锥的高怎样变化,面PAD与面PCD所成的二面角恒大于90°
如图,直角梯形ABCE中,,D是CE的中点,点M和点N在
ADE绕AD向上翻折的过程中,分别以
的速度,同时从点A和点B沿AE和BD各自匀速行进,t 为行进时间,0
。
(1)求直线AE与平面CDE所成的角;
(2)求证:MN//平面CDE。
如图3-1.已知、
分别是正方体
的棱
和棱
的中点.
(Ⅰ)试判断四边形的形状;
(Ⅱ)求证:平面平面
.
如图,四棱锥P—ABCD中,底面四边形ABCD是正方形,侧面PDC是边长为a的正
三角形,且平面PDC⊥底面ABCD,E为PC的中点。
|
(I)求异面直线PA与DE所成的角;
(II)求点D到面PAB的距离.