已知0<a<,A=1-a2,B=1+a2,C=,D=.
(1)求证:1-a>a2;
(2)比较A、B、C、D的大小
已知抛物线的焦点
也是椭圆
的一个焦点,
与
的公共弦的长为
.
(1)求的方程;
(2)过点的直线
与
相交于
,
两点,与
相交于
,
两点,且
与
同向.
(ⅰ)若,求直线
的斜率;
(ⅱ)设在点
处的切线与
轴的交点为
,证明:直线
绕点
旋转时,
总是钝角三角形.
已知数列满足
,
.
(1)若为递增数列,且
成等差数列,求
的值;
(2)若,且
是递增数列,
是递减数列,求数列
的通项公式.
如图,在四棱锥中,底面
是正方形,
底面
,
, 点
是
的中点,
,且交
于点
.
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面⊥平面
;
(Ⅲ)求二面角的余弦值.
某高中数学竞赛培训在某学段共开设有初等代数、平面几何、初等数论和微积分初步共四门课程,要求初等数论、平面几何都要合格,且初等代数和微积分初步至少有一门合格,则能取得参加数学竞赛复赛的资格.现有甲、乙、丙三位同学报名参加数学竞赛培训,每一位同学对这四门课程考试是否合格相互独立,其合格的概率均相同(见下表),且每一门课程是否合格相互独立.
(Ⅰ)求甲同学取得参加数学竞赛复赛的资格的概率;
(Ⅱ)记表示三位同学中取得参加数学竞赛复赛的资格的人数,求
的分布列及期望
.
如图,在平面四边形中,
.
(1)求的值;
(2)若,
,求
的长.