已知离心率为的椭圆的中心在原点,焦点在x轴上.双曲线以椭圆的长轴为实轴,短轴为虚轴,且焦距为2.求椭圆及双曲线的方程
已知函数.
(1)讨论函数的单调性;
(2)若函数的最小值为
,求
的最大值;
(3)若函数的最小值为
,
为
定义域
内的任意两个值,试比较
与
的大小.
已知,且
.
(1)求证:;
(2)若恒成立,求实数
的最大值.
某单位为了参加上级组织的普及消防知识竞赛,需要从两名选手中选出一人参加.为此,设计了一个挑选方案:选手从6道备选题中一次性随机抽取3题.通过考察得知:6道备选题中选手甲有4道题能够答对,2道题答错;选手乙答对每题的概率都是,且各题答对与否互不影响.设选手甲、选手乙答对的题数分别为ξ,η.
(1)写出ξ的概率分布列,并求出E(ξ),E(η);
(2)求D(ξ),D(η).请你根据得到的数据,建议该单位派哪个选手参加竞赛?
以原点为极点,以
轴的正半轴为极轴建立极坐标系,已知曲线
,过点
的直线
的参数方程为
,设直线
与曲线
分别交于
;
(1)写出曲线和直线
的普通方程;
(2)若成等比数列,求
的值.
已知甲、乙、丙等6人 .
(1)这6人同时参加一项活动,必须有人去,去几人自行决定,共有多少种不同的去法?
(2)这6人同时参加6项不同的活动,每项活动限1人参加,其中甲不参加第一项活动,乙不参加第三项活动,共有多少种不同的安排方法?
(3)这6人同时参加4项不同的活动,求每项活动至少有1人参加的概率.