如图所示,四棱锥P-ABCD中,PD⊥平面ABCD,PA与平面ABCD所成的角为60°,在四边形ABCD中,∠D=∠DAB=90°,AB=4,CD=1,AD=2.
(1)建立适当的坐标系,并写出点B,P的坐标;
(2)求异面直线PA与BC所成角的余弦值;
(3)若PB的中点为M,求证:平面AMC⊥平面PBC.
(本小题满分14分)
如图5, 已知抛物线,直线
与抛物线
交于
两点,
,
,
与
交于点
.
(1)求点的轨迹方程;
(2)求四边形的面积的最小值.
(本小题满分14分)
如图4,已知四棱锥,底面
是正方形,
面
,点
是
的中点,点
是
的中点,连接
,
.
(1)求证:面
;
(2)若,
,求二面角
的余弦值.
(本小题满分12分)
某市四所中学报名参加某高校今年自主招生的学生人数如下表所示:
中学 |
![]() |
![]() |
![]() |
![]() |
人数 |
![]() |
![]() |
![]() |
![]() |
为了了解参加考试的学生的学习状况,该高校采用分层抽样的方法从报名参加考试的四
所中学的学生当中随机抽取50名参加问卷调查.
(1)问四所中学各抽取多少名学生?
(2)从参加问卷调查的名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率;
(3)在参加问卷调查的名学生中,从来自
两所中学的学生当中随机抽取两名学生,用
表示抽得
中学的学生人数,求
的分布列.
(本小题满分12分)
已知的内角
的对边分别是
,且
.
(1) 求的值; (2) 求
的值.
(本小题满分14分)已知,
1)若,求方程
的解;
2)若对在
上有两个零点,求
的取值范围.