已知圆C:x2+y2=r2(r>0)经过点(1,).
(1)求圆C的方程;
(2)是否存在经过点(-1,1)的直线l,它与圆C相交于A,B两个不同点,且满足=+(O为坐标原点)关系的点M也在圆C上?如果存在,求出直线l的方程;如果不存在,请说明理由.
已知数列{}满足
=1,
=
,(1)计算
,
,
的值;(2)归纳推测
,并用数学归纳法证明你的推测.
某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料.
(1)求甲中奖且乙、丙都没有中奖的概率;
(2)求中奖人数ξ的分布列及数学期望Eξ.
已知函数
(Ⅰ)若曲线在点
处的切线与直线
平行,求出这条切线的方程;
(Ⅱ)若,讨论函数
的单调区间;
(Ⅲ)对任意的,恒有
,求实数
的取值范围.
已知三棱锥的底面
是直角三角形,且
,
平面
,
,
是线段
的中点,如图所示.
(Ⅰ)证明:平面
;
(Ⅱ)求三棱锥的体积.
2000辆汽车通过某一段公路时的时速的频率分布直方图如图所示. 问;
(Ⅰ)时速在的汽车大约有多少辆?
(Ⅱ)如果每个时段取中值来代表这个时段的平均速度,如时速在的汽车其速度视为55,请估算出这2000辆汽车的平均速度.