某工厂拟建一座平面图(如右图所示)为矩形且面积为200平方米的三级污水处理池,由于地形限制,长、宽都不能超过16米,如果池外周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80元(池壁厚度忽略不计,且池无盖).
(1)写出总造价y(元)与污水处理池长x(米)的函数关系式,并指出其定义域;
(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求最低总造价.
过圆x2+y2=4外一点A(4,0),作圆的割线,求割线被圆截得的弦的中点的轨迹方程.
已知椭圆的中心在原点,焦点在x轴上,一个顶点A(0,-1),且右焦点到右准线的距离为
.
(1)求椭圆的方程.
(2)试问是否能找到一条斜率为k(k≠0)的直线l,使l与椭圆交于不同两点M、N且满足|AM|=|AN|?若这样的直线存在,求出k的取值范围;若不存在,请说明理由.
如图,过点B(0,-b)作椭圆
=1(a>b>0)的弦,求这些弦长的最大值.
设椭圆ax2+by2=1与直线x+y=1相交于A、B两点,且|AB|=2
.又AB的中点M与椭圆中心连线的斜率为
,求椭圆的方程.
求椭圆
=1(a>b>0)的内接矩形面积的最大值.