若sin=lg,求:+
的值
(本小题满分14分)
已知函数,数列
满足
.
(Ⅰ)求数列的通项公式
;
(Ⅱ)求;
(Ⅲ)求证:
(本小题满分14分)已知椭圆以
为焦点,且离心率
.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点斜率为
的直线
与椭圆
有两个不同交点
,求
的范围。
(Ⅲ)设椭圆与
轴正半轴、
轴正半轴的交点分别为
,是否存在直线
,满足(Ⅱ)中的条件且使得向量
与
垂直?如果存在,写出
的方程;如果不存在,请说明理由。
(本小题满分14分)如图,四棱锥P-ABCD是底面边长为1的正方形,PD⊥BC,PD=1,PC=.
(Ⅰ)求证:PD⊥面ABCD;
(Ⅱ)求二面角A-PB-D的大小.
(本小题满分12分)某学校共有高一、高二、高三学生名,各年级男、女生人数如下图:
已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0. 19.
(Ⅰ)求的值;
(Ⅱ)现用分层抽样的方法在全校抽取名学生,问应在高三年级抽取多少名?
(Ⅲ)已知,求高三年级中女生比男生多的概率.
(本小题满分12分)已知.
(Ⅰ)将化为
的形式;
(Ⅱ)写出的最值及相应的
值;
(Ⅲ)若,且
,求
.