函数的图象与函数
的图象交于两点
(
在线段
上,
为坐标原点),过
作
轴的垂线,垂足分别为
,并且
分别交函数
的图象于
两点.
(1)试探究线段的大小关系;
(2)若平行于
轴,求四边形
的面积.
(本小题满分13分)已知A、B为抛物线C:y2 = 4x上的两个动点,点A在第一象限,点B在第四象限l1、l2分别过点A、B且与抛物线C相切,P为l1、l2的交点.
(Ⅰ)若直线AB过抛物线C的焦点F,求证:动点P在一条定直线上,并求此直线方程;
(Ⅱ)设C、D为直线l1、l2与直线x = 4的交点,求面积的最小值.
(本小题满分13分)设关于的一元二次方程
(
)有两根
和
,且满足
.
(1)试用表示
;
(2)求证:数列是等比数列;
(3)当时,求数列
的通项公式,并求数列
的前
项和
.
(本小题满分13分)函数y=Asin(ωx+)(A>0,ω>0)在x∈(0,7π)内取到一个最大值和一个最小值,且当x=
π时,y有最大值3,当x=6π时,y有最小值-3.
(1)求此函数解析式;
(2)写出该函数的单调递增区间;
(3)是否存在实数m,满足不等式Asin()>Asin(
)?若存在,求出m值(或范围),若不存在,请说明理由.
(本小题满分12分)在棱长为2的正方体中,设
是棱
的中点.
(1)求证:;
(2)求证:平面
;
(3)求三棱锥的体积.
(本小题满分12分)某校高一(2)班共有60名同学参加期末考试,现将其数学学科成绩(均为整数)分成六个分数段,画出如下图所示的部分频率分布直方图,请观察图形信息,回答下列问题:
(1)求70~80分数段的学生人数;
(2)估计这次考试中该学科的优分率(80分及以上为优分)、中位数、平均值;
(3)现根据本次考试分数分成下列六段(从低分段到高分段依次为第一组、第二组、…、第六组)为提高本班数学整体成绩,决定组与组之间进行帮扶学习.若选出的两组分数之差大于30分(以分数段为依据,不以具体学生分数为依据),则称这两组为“最佳组合”,试求选出的两组为“最佳组合”的概率.