某电视节目中有一游戏,由参与者掷骰子决定向前行进格数。若掷出奇数则参与者向前走一格,若掷出偶数,则参与者向前蹦两格(跃过中间的一格),能走到终点者获胜,中间掉入陷阱者失败。已知开始位置记作第1格,终点位置为第8格,只有第7格是一个陷阱.(I)求参与者能到第3格的概率.(Ⅱ) 求参与者掷3次骰子后,所在格数的分布列.(III) 求参与者能获胜的概率.
已知函数()。 (1)若,求证:在上是增函数; (2)求在上的最小值。
中角的对边分别为,且, (1)求角的大小; (2)若,求面积的最大值。
设均为正数,且 证明:(1); (2).
已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为(为参数). (1)写出直线的普通方程与曲线的直角坐标方程; (2)设曲线经过伸缩变换得到曲线,设为曲线上任一点,求的最小值,并求相应点的坐标。
已知函数 (1)当时,试讨论函数的单调性; (2)证明:对任意的,有.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号