已知向量a=(sin θ,-2)与b=(1,cos θ)互相垂直,其中θ∈
(1)求sin θ和cos θ的值;
(2)若5cos(θ-φ)=3cos φ,0<φ<,求cos φ的值.
已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)若将的图象向右平移
个单位,得到函数
的图象,求函数
在区间
上的最大值和最小值.
已知函数.
(Ⅰ)当时,如果函数
仅有一个零点,求实数
的取值范围;
(Ⅱ)当时,试比较
与1的大小;
(Ⅲ)求证:.
直线与椭圆
交于
,
两点,已知
,
,若
且椭圆的离心率
,又椭圆经过点
,
为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线过椭圆的焦点
(
为半焦距),求直线
的斜率
的值;
(Ⅲ)试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
已知数列和
满足:
,
其中
为实数,
为正整数.
(Ⅰ)对任意实数,证明数列
不是等比数列;
(Ⅱ)对于给定的实数,试求数列
的前
项和
;
(Ⅲ)设,是否存在实数
,使得对任意正整数
,都有
成立? 若存在,求
的取值范围;若不存在,说明理由.
已知半径为的圆的圆心在
轴上,圆心的横坐标是整数,且与
相切.
(Ⅰ)求圆的方程;
(Ⅱ)设直线与圆相交于
两点,求实数
的取值范围;
(Ⅲ)在(Ⅱ)的条件下,是否存在实数,使得弦
的垂直平分线
过点
,若存在,求出实数
的值;若不存在,请说明理由.