直线与椭圆
交于
,
两点,已知
,
,若
且椭圆的离心率
,又椭圆经过点
,
为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线过椭圆的焦点
(
为半焦距),求直线
的斜率
的值;
(Ⅲ)试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
已知多项式.(Ⅰ)求
及
的值;(Ⅱ)试探求对一切整数n,
是否一定是整数?并证明你的结论.
某射击小组有甲、乙两名射手,甲的命中率为,乙的命中率为
,在射击比武活动中每人射击两发子弹则完成一次检测,在一次检测中,若两人命中次数相等且都不少于一发,则称该射击小组为“先进和谐组”.(Ⅰ)若
,求该小组在一次检测中荣获“先进和谐组”的概率;(Ⅱ)计划在2011年每月进行1次检测,设这12次检测中该小组获得“先进和谐组”的次数为
, 如果
,求
的取值范围.
选修4-4 坐标系与参数方程已知直线的参数方程为
(
为参数),若以直角坐标系
的
点为极点,
方向为极轴,选择相同的长度单位建立极坐标系,得曲线
的极坐标方程为
.
(Ⅰ)求直线的倾斜角;(Ⅱ)若直线
与曲线
交于
两点,求
.
选修4-2 矩阵与变换已知,若
所对应的变换
把直线
变换为自身,求实数
,并求
的逆矩阵.
(本小题满分16分)已知数列,
满足
,其中
.(Ⅰ)若
,求数列
的通项公式;
(Ⅱ)若,且
.
(ⅰ)记,求证:数列
为等差数列;
(ⅱ)若数列中任意一项的值均未在该数列中重复出现无数次. 求首项
应满足的条件.