若直线l:与抛物线交于A、B两点,O点是坐标原点。(1)当m=-1,c=-2时,求证:OA⊥OB;(2)若OA⊥OB,求证:直线l恒过定点;并求出这个定点坐标。 (3)当OA⊥OB时,试问△OAB的外接圆与抛物线的准线位置关系如何?证明你的结论。
如图,四边形是正方形,△与△均是以为直角顶点的等腰直角三角形,点是的中点,点是边上的任意一点. (1)求证:; (2)求二面角的平面角的正弦值.
设函数. (1)若不等式的解集,求的值; (2)若,求的最小值.
在等比数列中,. (Ⅰ)求数列的通项公式; (Ⅱ)设,且为递增数列,若,求证:.
在中,内角所对边分别为,且. (1)求角的大小; (2)如果,求面积的最大值.
已知命题“存在”,命题:“曲线表示焦点在轴上的椭圆”,命题“曲线表示双曲线”. (1)若“且”是真命题,求的取值范围; (2)若是的必要不充分条件,求的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号