甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲 |
82 |
81 |
79 |
78 |
95 |
88 |
93 |
84 |
乙 |
92 |
95 |
80 |
75 |
83 |
80 |
90 |
85 |
(1)用茎叶图表示这两组数据;
(2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由;
(3)(理)若将频率视为概率,对甲同学在今后的3次数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望Eξ.
某城市2001年底人口为500万,人均住房面积为6 m2,如果该城市每年人口平均增长率为1%,则从2002年起,每年平均需新增住房面积为多少万m2,才能使2020年底该城市人均住房面积至少为24m2?(可参考的数据1.0118=1.20,1.0119=1.21,1.0120=1.22).
已知:等差数列{}中,
=14,前10项和
.
(1)求;
(2)将{}中的第2项,第4项,…,第
项按原来的顺序排成一个新数列,求此数列的前
项和
.
在等比数列中,
,公比
,前
项和
,求首项
和项数
)已知x、y满足,求
的最值
已知直线经过点P(1,1),
。
(1)写出直线的参数方程;
(2)设与圆
相交于两点A、B,求点P到A,B两点的距离之积