本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分
某厂生产某种零件,每个零件的成本为50元,出厂单价定为80元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.04元,但实际出厂单价最低不能低于60元。
(1)当一次订购量为多少个时,零件的实际出厂单价恰降为60元?
(2)设一次订购量为个,零件的实际出厂单价为P元,写出函数P=
的表达式;
(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)
设关于的一元二次方程
.
(1)若是从
、
、
、
四个数中任取的一个数,
是从
、
、
三个数中任取的一个数,求上述方程有实根的概率;
(2)若是从区间
任取的一个数,
是从区间
任取的一个数,求上述方程有实根的概率.
已知,
,
三点.
(1)求向量和向量
的坐标;
(2)设,求
的最小正周期;
(3)求的单调递减区间.
已知函数,
(
,
为自然对数的底数).
(1)当时,求
的单调区间;
(2)对任意的,
恒成立,求
的最小值;
(3)若对任意给定的,在
上总存在两个不同的
,使得
成立,求
的取值范围.
已知,数列
的前
项和为
,点
在曲线
上
,且
,
.
(1)求数列的通项公式;
(2)数列的前
项和为
,且满足
,
,求数列
的通项公式;
(3)求证:,
.
为了降低能源损耗,某体育馆的外墙需要建造隔热层.体育馆要建造可使用年的隔热层,每厘米厚的隔热层建造成本为
万元.该建筑物每年的能源消耗费用
(单位:万元)与隔热层厚度
(单位:
)满足关系:
(
,
为常数),若不建隔热层,每年能源消耗费用为
万元.设
为隔热层建造费用与
年的能源消耗费用之和.
(1)求的值及
的表达式;
(2)隔热层修建多厚时,总费用达到最小,并求最小值.