(本小题满分14分)已知数列是以d为公差的等差数列,数列是以q为公比的等比数列。(1)若数列的前n项和为且,求整数q的值;(2)在(1)的条件下,试问数列中最否存在一项,使得恰好可以表示为该数列中连续项的和?请说明理由;(3)若,求证:数列中每一项都是数列中的项。
设为实数,函数, (1)讨论的奇偶性; (2)求的最小值。
设函数与的定义域是且,是偶函数, 是奇函数,且,求和的解析式.
已知函数的定义域为,且对任意,都有,且当时,恒成立, 证明:(1)函数是上的减函数; (2)函数是奇函数。
判断下列函数的奇偶性: (1)(2)
已知数列的前项和,求数列是等比数列的充要条件。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号