(本小题满分12分)标准椭圆的两焦点为
,
在椭圆上,且
. (1)求椭圆方程;(2)若N在椭圆上,O为原点,直线
的方向向量为
,若
交椭圆于A、B两点,且NA、NB与
轴围成的三角形是等腰三角形(两腰所在的直线是NA、NB),则称N点为椭圆的特征点,求该椭圆的特征点.
数列的前
项和为
,
,
,等差数列
满足
,(1)分别求数列
,
的通项公式;
(2)若对任意的,
恒成立,求实数
的取值范围.
(12分)设函数(1)求函数
的单调区间;
函数。
(1)求的周期;
(2)若,
,求
的值。
.(本小题满分12分)
已知:直线AB过圆心O,交⊙O于AB,直线AF交⊙O于AF(不与B重合),直线l与⊙O相切于C,交AB于E,且与AF垂直,垂足为G,连结AC。
求证:(1)
(2)AC2=AE·AF。
.(本小题满分12分)
已知椭圆与双曲线
有共同的焦点F1、F2,设它们在第一象限的交点为P,且
(1)求椭圆的方程;
(2)已知N(0,-1),对于(1)中的椭圆,是否存在斜率为的直线
,与椭圆交于不同的两点A、B,点Q满足
?若存在,求出
的取值范围;若不存在,说明理由。