17.有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表:
|
优秀 |
非优秀 |
总计 |
甲班 |
10 |
|
|
乙班 |
|
30 |
|
合计 |
|
|
105 |
已知在全部105人中抽到随机抽取2人为优秀的概率为
(1)请完成上面的列联表;
(2)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”。
(3)若按下面的方法从甲班优秀的学生抽取一人;把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取的人的序号,试求抽到6或10的概率。
(本小题满分14分)已知是首项为19,公差d=-2的等差数列,
为
的前n项和.(1)求通项公式
及
;
(2)设是首项为1,公比为3的等比数列,求数列
的通项公式及其前n项和
(本小题满分12分)
(1)求b的值
(2)求sinC的值
(本小题共12分)已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)求在区间
上的最大值和最小值.
(本小题满分14分).如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC的中点,且DE∥BC.
(1)求证:DE∥平面ACD
(2)求证:BC⊥平面PAC;
(3)求AD与平面PAC所成的角的正弦值;
(本小题满分14分)
已知函数,数列
满足:
,
N*
.
(1)求数列的通项公式;
(2)令函数,数列
满足:
,
N*),
求证:对于一切的正整数,都满足:
.