(本小题满分12分)设同时满足条件:①;②
(
,
是与
无关的常数)的无穷数列
叫“特界”数列.
(1)若数列为等差数列,
是其前
项和,
,求
;
(2)判断(1)中的数列是否为“特界” 数列,并说明理由。
如图,在四棱锥S-ABCD中,AB⊥AD,AB∥CD,CD=3AB=3,平面SAD⊥平面ABCD,E是线段AD上一点,AE=ED=,SE⊥AD.
(Ⅰ)证明:平面SBE⊥平面SEC;
(Ⅱ)若SE=1,求直线CE与平面SBC所成角的正弦值.
第30届夏季奥运会将于2012年7月27日在伦敦举行,当地某学校招募了8名男志愿者和12名女志愿者。将这20名志愿者的身高编成如下茎叶图(单位:cm):若身高在180cm以上(包括180cm)定义为“高个子”,身高在180cm以下(不包括180cm)定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”。
(I)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?
(Ⅱ)若从所有“高个子”中选3名志愿者,用X表示所选志愿者中能担任“礼仪小姐”的人数,试写出X的分布列,并求X的数学期望。
已知等差数列满足:
.
(Ⅰ)求的通项公式;
(Ⅱ)若(
),求数列
的前n项和
.
已知函数.
(1)求函数的最小值;
(2)若≥0对任意的
恒成立,求实数
的值;
(3)在(2)的条件下,证明:
已知双曲线与圆
相切,过
的左焦点且斜率为
的直线也与圆
相切.
(1)求双曲线的方程;
(2)是圆
上在第一象限内的点,过
且与圆
相切的直线
与
的右支交于
、
两点,
的面积为
,求直线
的方程.