为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设
为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值及的表达式;
(2)隔热层修建多厚时,总费用达到最小,并求最小值.
已知函数是偶函数.
(1)求k的值;
(2)若方程有解,求m的取值范围.
设函数,其中,角
的顶点与坐标原点重合,始边与
轴非负半轴重合,终边经过点
,且
.
(1)若点的坐标为(-
),求
的值;
(2)若点为平面区域
上的一个动点,试确定角
的取值范围,并求函数
的值域.
设命题p:函数的定义域为R;命题q:
对一切的实数
恒成立,如果命题“p且q”为假命题,求实数a的取值范围.
已知函数图象上一点
处的切线方程为
.
(1)求的值;
(2)若方程在
内有两个不等实根,求
的取值范围(其中
为自然对数的底数);(3)令
,若
的图象与
轴交于
(其中
),
的中点为
,求证:
在
处的导数