(本小题满分12分)在平面直角坐标系中,线段AB与y轴交于点
,直线AB的斜率为k,且满足
(1)证明:对任意的实数,一定存在以y轴为对称轴且经过A、B、O三点的抛物线C,并求出抛物线C的方程;
(2)对(1)中的抛物线C,若直线与其交于M、N两点,求∠MON的取值范围.
设,函数
.
(Ⅰ)若,求曲线
在点
处的切线方程;
(Ⅱ)求函数在
上的最小值.
已知函数.
(I)若函数在点
处的切线斜率为4,求实数
的值;
(II)若函数在区间
上存在零点,求实数
的取值范围
若关于的实系数方程
有两个根,一个根在区间
内,另一根在区间
内,记点
对应的区域为
.
(1)设,求
的取值范围;
(2)过点的一束光线,射到
轴被反射后经过区域
,求反射光线所在直线
经过区域
内的整点(即横纵坐标为整数的点)时直线
的方程.
已知函数.
(1)当a = 4,解不等式;
(2)若函数是奇函数,求a的值;
(3)若不等式在
上恒成立,求实数a的取值范围.
(本小题满分13分)
已知数列满足:
,
(I)求得值;
(II)设求证:数列
是等比数列,并求出其通项公式;
(III)对任意的,在数列
中是否存在连续的
项构成等差数列?若存在,写出这
项,并证明这
项构成等差数列;若不存在,说明理由。