已知
是底面边长为1的正四棱柱,
是
和
的交点.
⑴ 设
与底面
所成的角的大小为
,二面角
的大小为
.求证:
;
⑵ 若点
到平面
的距离为
,求正四棱柱
的高.

设
.
(1)若
,求
最大值;
(2)已知正数
,
满足
.求证:
;
(3)已知
,正数
满足
.证明:
.
已知椭圆
:
(
)的右焦点
,右顶点
,右准线
且
.
(1)求椭圆
的标准方程;
(2)动直线
:
与椭圆
有且只有一个交点
,且与右准线相交于点
,试探究在平面直角坐标系内是否存在点
,使得以
为直径的圆恒过定点
?若存在,求出点
坐标;若不存在,说明理由.
)已知某音响设备由五个部件组成,A电视机,B影碟机,C线路,D左声道和E右声道,其中每个部件工作的概率如图所示,能听到声音,当且仅当A与B中有一个工作,C工作,D与E中有一个工作;且若D和E同时工作则有立体声效果.
(1)求能听到立体声效果的概率;
(2)求听不到声音的概率.(结果精确到0.01)
设等差数列
的前
项和为
.且
.
(1)求数列
的通项公式;
(2)若
,数列
满足:

,求数列
的前
项和
.
如图,在四棱锥
中,底面
为菱形,
,
为
的中点.
(1)若
,求证:平面
平面
;
(2)点
在线段
上,
,若平面
平面
,且
,求二面角
的大小.