如图,已知椭圆
的中心在圆点
,长轴左、右端点
、
在x轴上,椭圆
的短轴为
,且
,
的离心率都为
,直线
,
与
交于两点,与
交于两点,这四点按纵坐标从大到小依次为
、
、
、
.
(I)设
,求
与
的比值;
(II)当
变化时,是否存在直线
,使得
,并说明理由.
设函数
(1)求的单调增区间;
(2)时,函数
有三个互不相同的零点,求实数
的取值范围.
某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组得到的频率分布表如下图所示,
班号 |
分组 |
频数 |
频率 |
第1组 |
![]() |
5 |
0.050 |
第2组 |
![]() |
① |
0.350 |
第3组 |
![]() |
30 |
② |
第4组 |
![]() |
20 |
0.200 |
第5组 |
![]() |
10 |
0.100 |
合计 |
100 |
1.00 |
(1)请先求出频率分布表中①、②位置相应的数据,再在答题纸上完成下列频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求:第4组至少有一名学生被考官A面试的概率?
设函数.
(1)求的最小正周期;
(2)若函数的图像向右、向上分别平移
个单位长度得到
的图像,求
在
的最大值.
在△中,角
、
、
的对边分别为
、
、
,且
.
(1)求;
(2)若,且
=
,求
和
的值.
某电视台在一次对文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关数据如下表所示:
文艺节目 |
新闻节目 |
总计 |
|
20岁到40岁 |
40 |
20 |
60 |
40岁以上 |
15 |
25 |
40 |
总计 |
55 |
45 |
100 |
(1)用分层抽样方法在收看新闻节目的观众中,随机抽取9名,那么40岁以上的观众应抽取几名?
(2)由表中数据分析,我们能否有99%的把握认为收看新闻节目的观众与年龄有关?(最后结果保留3位有效数字,四舍五入)
附:
![]() |
0.05 |
0.01 |
0.005 |
0.001 |
![]() |
3.841 |
6.635 |
7.879 |
10.828 |